

REPORT

Test of Low-Temperature Flexibility of an Elastomeric Sealant

Project Number: 04-371B Building Envelope Consultants Ltd

Prepared for: Richard McLauchlan

President

Building Envelope Consultants Ltd

P.O. Box 72094 Calgary Alberta

T2V 5A8

Prepared by: David Crick, P.Eng

Advanced Materials

Alberta Research Council, Inc.

250 Karl Clark Road

Edmonton, Alberta T6N 1E4

Tel: 780/450-5374 Fax: 780/450-5477

February 18, 2005

Introduction

A mandrel bend test was performed of the **Envelope Seal** single component copolymer sealant to determine the low-temperature flexibility. The test was performed according to ASTM C734-01 "Standard Test Method for Low-Temperature Flexibility of Latex Sealants After Artificial Weathering". The artificial weathering portion of the test was excluded since the sealant is not exposed to direct sunlight in normal use.

Test Apparatus

- Cold Chamber
- 1" Diameter mandrel

Test Specimens

- Three test specimens were prepared
- 3" x 6", 16 gauge Aluminum Sheet
- 1-1/2" x 5" x 1/8" sealant

Test Procedure

The test specimens were conditioned in the cold chamber at -17° C for 4 hours. While in the cold chamber the specimens were bent 90° over the 1" mandrel within 1s. The specimens were then visually inspected for cracking of the sealant or adhesive failure to the aluminum, or both.

Results

The tested specimens showed a small amount of cracking and tearing at the edges of the sealant in the high stressed region. Figures 1-3 show the specimens after the test.

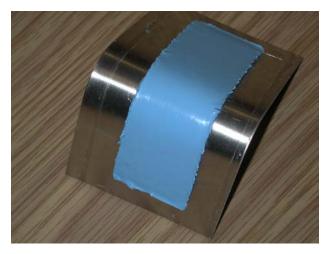


Figure 1, Specimen #1

Figure 2, Specimen #2

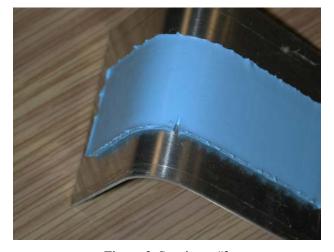


Figure 3, Specimen #3

Conclusion

This test demonstrates that the **Envelope Seal** sealant has good flexibility at -17° C.

The results contained herein relate only to the items tested. This report should only be reproduced in full and with the permission of the Alberta Research Council.